Modelagem de nicho ecológico de musgos bioindicadores
DOI:
https://doi.org/10.22571/2526-4338485Palavras-chave:
Briofitas, susceptibilidade de ocorrência, contaminação, monitoramento ambientalResumo
As briófitas podem ser utilizadas como bioindicadoras, no entanto, uma das limitações desse uso são as lacunas no conhecimento sobre a ocorrência das espécies. Assim, o presente estudo teve como objetivo realizar a modelagem de nicho ecológico para Helicodontium capillare (Hedw.) A.Jaeger e Thuidium tomentosum Schimp., duas espécies de musgos bioindicadores. Os dados de ocorrência das espécies foram obtidos na plataforma Global Biodiversity Information Facility (GBIF) e SpeciesLink. As variáveis bioclimáticas foram coletadas do WorldClim 2.0. Para selecionar as menos correlacionadas foi realizada a análise de correlação de Pearson. A modelagem foi feita utilizando os algoritmos Generalized Additive Models, Gaussian Process, MaxEnt, Random Forest e Support Vector Machine. Usando os melhores modelos foi gerado um modelo consenso. A validade dos modelos foi testada utilizando a métrica True Skill Statistic (TSS). Os resultados indicam que as duas espécies apresentam maior adequabilidade ambiental em ambientes com alta precipitação principalmente em países industrializados da América Latina à exemplo do Brasil e Colômbia. Além disso, as áreas de maior adequabilidade também correspondem à grandes centros urbanos com altos índices de poluição. Portanto, essas espécies podem ser utilizadas como bioindicadoras nessas regiões, auxiliando assim no processo de identificação e gestão do problema.
Downloads
Referências
Andrade, A. F. A., Velazco, S. J. E., & Júnior, P. D. M. (2020). ENMTML: An R package for a straightforward construction of complex ecological niche models. Environmental Modelling & Software,125, 1-11.doi: 10.1016/j.envsoft.2019.104615
Bagliano, R. V. (2012). Principais organismos utilizados como bioindicadores relatados com uso de avaliadores de danos ambientais. Revista Meio Ambiente e Sustentabilidade, 2(1), 24-40. Recuperado de https://www.uninter.com/revistameioambiente/index.php/meioAmbiente/article/view/113/50
Barbet‐Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo‐absences for species distribution models: how, where and how many?. Methods in ecology and evolution, 3(2), 327-338. doi: 10.1111/j.2041-210X.2011.00172.x
Barbosa, S. F., & Carvalho, M. A. S. (2016). Análise Cienciométrica da Utilização de Briófitas como Bioindicadores. Caderno de Pesquisa, 28(1), 34-47. doi: 10.17058/cp.v28i1.4596
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
Buck, W. R. (2000). Morphology and Classification of Mosses. In: J. A. Shaw & B. Goffinet (eds.). Bryophyte Biology. (1a ed., cap. 13, pp. 71-123). Cambridge: Cambridge University Press.
Câmara, P. E, Teixeira, R., Lima, J., & Lima, J. (2003). Musgos urbanos do Recanto das Emas, Distrito Federal, Brasil. Acta botanica brasilica, 17(4), 507-513. doi: 10.1590/S0102-33062003000400003
Costa, D. P., Camara, P. E. A. S., Porto, K.C.; Luizi-Ponzo, A.P & Ilkiu-Borges, A.L.( 2010). Musgos. In: Catálogo de Plantas e Fungos do Brasil. v.1. (1a ed., pp. 452-521). Rio de Janeiro: Andrea Jakobsson Estúdio, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro. Recuperado de https://static.scielo.org/scielobooks/z3529/pdf/forzza-9788560035083.pdf
Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carre, G., Garcia Marquez, J.R., Gruber, B., Lafoourcade, B., Leitao, P.J., Münkemüller, T., Mcclean, C., Osborne, P.E., Reineking, B., Schröder, B., Skidmore, A.K., Zurell, D. & Lautenbach, S. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27-46. doi: 10.1111/j.1600-0587.2012.07348.x
Fick, S. E. & Hijmans, R. J. (2017) WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International journal of climatology, 37(12), 4302-4315. doi: 10.1002/joc.5086
Frahm, J.P. (1991). Dicranaceae: Campylopodioideae, Paraleucobryoideae. Flora Neotropica 54: 1-238.
GBIF. (2020). Global Biodiversity Information Facility. Disponível em: https://www.gbif.org/
GCA. (2020). Global Carbon Atlas. Disponível em: http://www.globalcarbonatlas.org/en/CO2-emissions.
Goffinet, B. & Shaw, A. J. (2009) Bryophyte Biology. (2a ed.). Cambridge: Cambridge University Press
Golding, N., & Purse, B. V. (2016). Fast and flexible Bayesian species distribution modelling using Gaussian processes. Methods in Ecology and Evolution, 7(5), 598-608. doi: https://doi.org/10.1111/2041-210X.12523
Guisan, A., Edwards Jr, T. C., & Hastie, T. (2002). Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological modelling, 157(2-3), 89-100. Recuperado de: https://web.stanford.edu/~hastie/Papers/GuisanEtAl_EcolModel-2003.pdf
Guisan, A., & Zimmermann, N. E. (2000) Predictive habitat distribution models in ecology. Ecological modelling, 135 (2-3), 147-186. doi: 10.1016/S0304-3800(00)00354-9
IBGE. (2010a). Censo 2010. Disponível em: https://censo2010.ibge.gov.br .
IBGE (2010b). Atlas do Censo Demográfico 2010. Recuperado de: https://biblioteca.ibge.gov.br/visualizacao/livros/liv64529_cap1.pdf.
IBGE. (2017). Demografia das empresas 2015. Rio de Janeiro, 91p. Disponível em: https://www.ibge.gov.br/estatisticas/economicas/industria/9068-demografia-das empresas.html?=&t=publicacoes.
Inácio-Silva, M.; Carmo, D. M., & Peralta, D. F. (2017) As espécies brasileiras endêmicas de Campylopus Brid.(Bryophyta) estão ameaçadas? Uma análise usando modelagem para avaliar os seus estados de conservação. Hoehnea, 44 (3), 464-472. doi: 10.1590/2236-8906-08/2017
Liana, M., Edison, O., Jorge, M., Marcos, M., Leda, A., & Guerrero, U. (2016) Situação atual da qualidade do ar das principais cidades da América Latina. Ciência e Natura, 38, 523-531. doi: 10.5902/2179460X20290
Mazzoni, A. C., Lanzer, R., Bordin, J., Schafer, A., & Wasum, R. (2012) Mosses as indicators of atmospheric metal deposition in an industrial area of southern Brazil. Acta Botanica Brasilica, 26(3), 553-558. doi: 10.1590/S0102-33062012000300005
Muniz, D.H.F. & Oliveira-Filho, E.C. (2006). Metais pesados provenientes de rejeitos de mineração e seus efeitos sobre a saúde e o meio ambiente. Universitas: ciências da saúde, 4(1), 83-100. doi: 10.5102/ucs.v4i1.24
OEC. (2020). Observatorio de Complejidad Económica. Recuperado de: https://atlas.media.mit.edu/es/profile/country/col/
Ocampo, J. S. (2017). Vivienda industrializada: antecedentes en el mundo y propuesta al déficit de vivienda social en Colombia. Cuadernos de Vivienda y urbanismo, 10(20), 79-96.doi: 10.11144/Javeriana.cvu10-20.viam
Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11, 1633–1644. doi: 10.5194/hess-11-1633-2007
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231-259. doi: 10.1016/j.ecolmodel.2005.03.026
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Version 4.0.0. Disponível em: https://www.R-project.org
SpeciesLink. (2020). SpeciesLink. Disponível em: http://www.splink.org.br/.
Reboita, M. S., Gan, M. A., Rocha, R. P. D., & Ambrizzi, T. (2010). Regimes de precipitação na América do Sul: uma revisão bibliográfica. Revista brasileira de meteorologia, 25(2), 185-204. doi: 10.1590/S0102-77862010000200004.
Salcedo‐Sanz, S., Rojo‐Álvarez, J. L., Martínez‐Ramón, M., & Camps‐Valls, G. (2014). Support vector machines in engineering: an overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(3), 234-267. doi: 10.1002/widm.1125
Shepherd, G. J. (2005). Plantas terrestres. In. Lewinsohn, T. M. (Org.). Avaliação do estado do conhecimento da biodiversidade brasileira. (1a ed, pp. 145-192). Série Biodiversidade vol 2. Ministério do Meio Ambiente.
Silva, M. P. P., Kamino, L. H. Y., & Pôrto, K. C. (2014). Is the current network system of protected areas in the Atlantic Forest effective in conserving key species of bryophytes? Tropical Conservation Science, 7, 61-74. doi: 10.1177/194008291400700110
Teixeira, D.C.L.; Moreira, I.F.V.; Coelho, M.A.; Amaral, Y.F.Q. & Cupertino, M.C. (2020). Exposição a contaminantes ambientais inorgânicos e danos à saúde humana. Brazilian Journal of Health Review, 3 (4), 10353-10369. doi: 10.34119/bjhrv3n4-256
UNIDO. (2018). Competitive Industrial Performace Report 2018. Bienal cip report. 116p.
Vanderpoorten, A. & Goffinet, B. (2009). Introduction of Bryophytes. Cambridge: Cambridge University Press.
Velazco, S. J. E., Villalobos, F., Galvão, F., & De Marco Júnior, P. (2019). A dark scenario for Cerrado plant species: Effects of future climate, land use and protected areas ineffectiveness. Diversity and Distributions, 25(4), 660-673. doi: 10.1111/ddi.12886
Vieira, H. C. A., Oliveira, R. R., Silva, M. L. A., Silva, D. L. S., da Conceição, G. M., & Oliveira, H. C. (2017). Briófitas de ocorrências em São João do Sóter, Maranhão, Brasil. Acta Brasiliensis, 1(2), 8-12. doi: 10.22571/Actabra12201745
Zurell, D., Zimmermann, N. E., Gross, H., Baltensweiler, A., Sattler, T., & Wüest, R. O. (2020). Testing species assemblage predictions from stacked and joint species distribution models. Journal of Biogeography, 47(1), 101-113. doi: 10.1111/jbi.13608