Os efeitos do ozônio troposférico em espécies de plantas: Novas perspectivas
DOI:
https://doi.org/10.22571/2526-4338583Palavras-chave:
Clorofilla, ozônio, clorose, antocianina, Neurin oleander, bioindicador, espectrometria UV-VisResumo
O efeito do ozônio troposférico sobre a fisiologia das plantas foi bem estabelecido utilizando análise físico-química e avaliação visual. Um dos principais processos metabólicos, nas plantas afectadas pelo ozônio, é a fotossíntese. Isto, por sua vez, afecta uma série de processos secundários necessários para a sobrevivência das plantas. Este estudo centrou-se em dois aspectos principais; a determinação qualitativa dos danos através da avaliação visual e a quantificação dos danos através da determinação do conteúdo de clorofila e outros parâmetros de qualidade utilizando técnicas espectrofotométricas em várias espécies de plantas. Foram consideradas três configurações distintas, principalmente rurais, urbanas e semiurbanas, representando a topografia das ilhas de Malta e Gozo. Observou-se que a clorose não foi o único factor que contribuiu para o amarelecimento das folhas. Outra descoberta importante foi a correlação entre os níveis de ozônio (50,18-69,35 ppb) e o teor de antocianina (2,57-28,99 mg/kg) das folhas. Das três espécies vegetais que foram amplamente estudadas (Nerium oleander, Pinus halepensis e Schinus terebinthifolius), a N. oleander apresentou resultados promissores como bioindicador de danos induzidos pelo ozônio. Devido à presença desta planta ornamental em zonas rurais e urbanas, ela pode ser utilizada por investigadores e autoridades como um instrumento de avaliação dos níveis de ozono troposférico.
Downloads
Referências
Burkey, K. O., Booker, F. L., Ainsworth, E. A., & Nelson, R.L. (2012). Field assessment of a snap bean ozone bioindicator system under elevated ozone and carbon dioxide in a free air system. Environmental Pollution, 166, 167-171. doi: 10.1016/j.envpol.2012.03.020
Chu, A., Zhang, Y., & Tian, Y. (2012). Physiological changes of leaves of several fall color trees during color changing period in autumn and winter. Journal of Northeast Forestry University, 40(11), 40-43.
DIRECTIVE 2001/81/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 October 2001 on national emission ceilings for certain atmospheric pollutants, Official Journal of the European Communities, L 309, 22-30.
DIRECTIVE 2008/50/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 21 May 2008 on ambient air quality and cleaner air for Europe, Official Journal of the European Union, L 152, 1-44.
European Environment Agency (EEA). (2019). Air Quality in Europe. Luxembourg: European Environment Agency. Recovered from: https://www.eea.europa.eu/publications/air-quality-in-europe-2019. doi:10.2800/822355
Environmental Protection Agency (EPA). 2015. National Ambient Air Quality Standards (NAAQS) for Ozone: Final rule, Federal Register, 80(206), 65292-65468
European Topic Centres on Air Pollution, Transport, Noise and Industrial Pollution (ETC/ATNI). (2020). European air quality maps for 2018 — PM10, PM2.5, ozone, NO2 and NOX spatial estimates and their uncertainties, Eionet Report ETC/ATNI 10/2020, European Topic Centre on Air Pollution, Transport, Noise and Industrial Pollution, Norway Recovered from: https://www.eionet.europa.eu/etcs/etc-atni/products/etc-atni-reports/etc-atni-report-10-2020-european-air-quality-maps-for-2018-pm10-pm2-5-ozone-no2-and-nox-spatial-estimates-and-their-uncertainties-1
Feng, H., Chen, G., Xiong, L., Liu, Q., & Yang, W. (2017). Accurate digitization of the chlorophyll distribution of individual rice leaves using hyperspectral imaging and an integrated image analysis pipeline. Frontiers in Plant Science, 8, 1238. doi: 10.3389/fpls.2017.01238
Giri, S., Shrivastava, D., Deshmukh, K., & Dubey, P. (2013). Effects of Air Pollution on Chlorophyll Content of Leaves. Current Agriculture Research Journal, 1(2), 93-98. doi: 10.12944/CARJ.1.2.04
Glories, Y. (1984). La couleur des vins rouges: 2e. Partie: mesure, origine et interpretation. Connaissance de la Vigne et du Vin, 18(4), 253–271. doi: 10.20870/oeno-one.1984.18.4.1744
Gottardini, E., Cristofolini, F., Cristofori, A., & Ferretti, M. (2014). Ozone risk and foliar injury on Viburnum lantana L.: a meso-scale epidemiological study. Science of the Total Environment, 493, 954-960. doi: 10.1016/j.scitotenv.2014.06.041
Guicherit, R. (1988). Ozone on an Urban and Regional Scale. In: I. S. A. Isaksen (Ed) Tropospheric Ozone. NATO ASI Series (Series C: Mathematical and Physical Sciences), Vol. 227. Springer, Dordrecht. doi: 10.1007/978-94-009-2913-5_3
Harborne, A. J. (2012). Phytochemical methods: A guide to modern techniques of plant analysis. London: Chapman & Hall. doi: 10.1007/978-94-009-5921-7
Holland, M., Kinghorn, S., Emberson, L., Cinderby, S., Ashmore, M., Mills, G., & Harmens, H. (2006). Development of a framework for probabilistic assessment of the economic losses caused by ozone damage to crops in Europe. Bangor: NERC/Centre for Ecology and Hydrology Publisher.
Hopkins, W. G., & Hüner, N. P. (2008). Introduction to Plant Physiology. The University of Western Ontario: John Wiley & Sons, Inc.
Ibrahim, M., Jaafar, H., Karimi, E., & Ghasemzadeh, A. (2014). Allocation of Secondary Metabolites, Photosynthetic Capacity, and Antioxidant Activity of Kacip Fatimah (Labisia pumila Benth) in Response to CO2 and Light Intensity. The Scientific World Journal. doi: 10.1155/2014/360290
Knudson, L. L., Tibbits, W. T., & Edwards, G. E. (1977). Measurement of Ozone Injury by Determination of Leaf Chlorophyll concentration. Plant Physiology, 60, 606-608. doi: 10.1104/pp.60.4.606.
Lavoie, G. A., Heywood, J. B., & Keck, J. C. (1970). Experimental and theoretical study of nitric oxide formation in internal combustion engines. Combustion Science and Technology, 1(4), 313-326. doi: 10.1080/00102206908952211
Le Houérou, H. N. (1981). Impact of man and his animals on Mediterranean vegetation. In: di Castri, F., Goodall, D. W., & Specht R. L., eds. Mediterranean-Type Shrublands. Ecosystems of the World. Amsterdam: Elsevier
Li, Y., Yang, S., Jingmin, J., & Jun, L. (2019). Spectroscopic determination of leaf chlorophyll content and color for genetic selection on Sassafras tzumu. Plant Methods, 15(1) 1-11. doi: 10.1186/s13007-019-0458-0
Macdowell, F. (1965). Stages of Ozone Damage to Respiration of Tobacco Leaves. Canadian Journal of Botany, 43(4), 420-427.
Masri, S., Hou, H., Dang, A., Yao, T., Zhang, L., Wang, T., Qin, Z., Wu, S., Han, B., Chen, J., Chen, Y., Wu, J. (2019). Development of spatiotemporal models to predict ambient ozone and NOx concentrations in Tianjin, China. Atmospheric Environment, 213, 37-46. doi : 0.1016/j.atmosenv.2019.05.060
Meletiou-Christou, M. S., Banilas, G. P., Bardis, C., & Rhizopoulou, S. (2011). Plant biomonitoring: impact of urban environment on seasonal dynamics of storage substances and chlorophylls of oleander. Global NEST Journal, 13(4), 395-404.
Mills, G., Pleijel, H., Malley, C. S., Sinha, B., Cooper, O. R., Schultz, M. G., Neufeld, H. S., Simpson, D., Sharps, K., Feng, Z., Gerosa, G., Harmens, H., Kobayashi, K., Saxena, P., Paoletti, E., Sinha, V., Xu, X. (2018). Tropospheric Ozone Assessment Report: present-day tropospheric ozone distribution and trends relevant to vegetation. Elementa: Science of the Anthropocene, 6(1). doi: 10.1525/elementa.302
Milne, B., Toker, Y., Rubio, A., & Brøndsted Nielsen, S. (2015). Unraveling the Intrinsic Color of Chlorophyll. Angewandte Chemie International Edition, 54(7), 2170-2173. doi: 10.1002/anie.201410899
Monk, R., & Murray, F. (1995). The Relative Tolerance of Some Eucalyptus Species to Ozone Exposure. Water, Air, & Soil Pollution, 85, 1405-1411. doi : 10.1007/BF00477178
Moser, S., Ulrice, M., & Müllera, T. (2008). A yellow chlorophyll catabolite is a pigment of the fall colours. Photochemical and Photobiological Sciences, 8, 1577-1581. doi: 10.1039/b813558d
Ougham, H. J., Morris, P., & Thomas, H. (2005). The Colors of Autumn Leaves as Symptoms of Cellular Recycling and Defenses Against Environmental Stresses. Current Topics in Developmental Biology, 66(1), 135-160. doi: 10.1016/S0070-2153(05)66004-8
Owusu, J., Ma, H., Abano, E. E., & Engmann, F. N. (2012). Influence of two inocula levels of Saccharomyces bayanus, BV 818 on fermentation and physico-chemical properties of fermented tomato (Lycopersicon esculentum Mill.) juice. African Journal of Biotechnology, 11(33), 8241-8249. doi: 10.5897/AJB11.4300
Paoletti, E., De Marco, A., Beddows, D. C., Harrison, R. M., & Manning, W. J. (2014). Ozone levels in European and USA cities are increasing more than at rural sites, while peak values are decreasing. Environmental Pollution, 192, 295-299. doi: 10.1016/j.envpol.2014.04.040
Rautio, P., Fürst, A., Stefan, K., Raitio, H., & Bartels, U. (2016). Part XII: Sampling and Analysis of Needles and Leaves. In: UNECE ICP Forests Programme Co-ordinating Centre (ed.): Manual on methods and. Thünen Institute of Forest Ecosystems, Eberswalde, Germany: United Nations Economic Commission for Europe (UNECE).
Schaub, M., Calatayud , V., Ferretti , M., Brunialti, G., Lövblad, G., Krause, G., & Sanz, M. (2016). Part VIII: Monitoring of Ozone Injury. In: UNECE ICP Forests Programme Co-ordinating Centre (ed.): Manual. Thünen Institute of Forest Ecosystems, Eberswalde: United Nations Economic Commission for Europe (UNECE).
Schreiber, V. (1996). A synoptic climatological evaluation of surface ozone concentrations in Lancaster Country, Pennsylvania. Millersville University of Pennsylvania.
Sharafudeen, R. (2010). A spectroscopic method for quick evaluation of tint strength and tint tone of titania (rutile) pigment and factors affecting them. Color Research & Application, 44(1). doi: 10.1002/col.22271
Sharma, S. B., Jain, S., Khirwadkar, P., & Kulkarni, S. (2013). The effects of air pollution on the environment and human health. Indian Journal of Research in Pharmacy and Biotechnology, 1(3), 391-396.
Shimizu, Y., Lu, Y., Aono, M., & Omasa, K. (2019). A novel remote sensing-based method of ozone damage assessment effect on Net Primary Productivity of various vegetation types. Atmospheric Environment, 217, 116947. doi: 10.1016/j.atmosenv.2019.116947
Sicard, P., De Marco, A., Troussier, F., Renou, C., Vas, N., & Paoletti, E. (2013). Decrease in surface ozone concentrations at Mediterranean remote sites and increase in the cities. Atmospheric Environment, 79, 705–715. doi:10.1016/j.atmosenv.2013.07.042
Tonelli, M., Pellegrini, E., D’Angiolillo, F., Petersen, M., Nali, C., Pistelli, L., & Lorenzini, G. (2015). Ozone-elicited secondary metabolites in shoot cultures of Melissa officinalis L. Plant Cell. Tissue and Organ Culture (PCTOC), 120(2), 617-629. doi: 10.1007/s11240-014-0628-8
van Zelm, R., Huijbregts, M. A., den Hollander, H. A., Van Jaarsveld, H. A., Sauter, F. J., Struijs, J., Harm J. van Wijnen & van de Meent, D. (2008). European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment. Atmospheric Environment, 42(3), 441-453. doi: 10.1016/j.atmosenv.2007.09.072